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This paper considers the transverse vibration of flexural structures subjected to preloads that are tangent to the
structural midplane; the effects of such membrane loads on the damping of the structural vibration modes are of
particular interest. The theory developed indicates that tensile loads increase the natural frequencies of vibration (as
is well known), but decrease the modal damping; for beams, the effect on damping is stronger than the effect on
frequency. Conversely, compressive loads decrease the natural frequencies and increase the modal damping. These
conclusions are consistent for various models of material damping. Available experimental data show good

agreement with theory.

Nomenclature

A% (w) = complex modal response, frequency domain

a,, (1) = modal coordinate

cgrs ¢y = viscous damping coefficients for: strain-based
viscous damping; motion-based viscous damping

El = flexural rigidity or stiffness of beam

F, = harmonic forcing amplitude

L = length of beam

m = mode number or index

P = critical buckling load (compressive)

p.(x,t) = distributed lateral load acting on beam

(0] = resonance quality factor (1/n)

T = tension, tensile load

T/P, = nondimensional tension

Vv = potential energy

w(x,f) = transverse displacement of beam neutral axis

X = spatial coordinate that locates cross sections along
the neutral axis of a beam

" = modal damping ratio

NEr = loss factor of beam in flexure

N = modal loss factor

N./Mg = relative modal loss factor with tension

PA = mass per unit length of beam

w = frequency of harmonic forcing

Wy, = natural frequency of vibration for mode m

@m0 = natural frequency of vibration for mode m without
tension

w,,/®w, = normalized natural frequency of mode m with
tension

N = natural frequency of vibration for mode 1

(fundamental mode) without tension

I

EMBRANE (or in-plane) loads (or internal prestress) are
often encountered in thin-walled aerospace structures.
Examples of tensile loads include those associated with spinning
helicopter rotor blades, bladed disks in engines, and pressurized
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aircraft cabins; compressive loads can be due to gravitational forces
and acceleration or to pressure loads in buoyant structures. Both
tension and compression can be encountered when structures with
extended cross sections deform in bending or when temperature or
material changes induce internal stresses. The latter situation is
experienced in various manufacturing processes involving metallic,
composite, and other materials, including silicon microelectro-
mechanical systems (MEMS).

The primary effects of such membrane loads on the linear
transverse dynamics of flexural structures (beams, plates, and shells)
are generally considered to be changes in the natural frequencies and
mode shapes of the structures [1]. These can be qualitatively
understood by analogy with the behavior of a string in tension. Such
behavior can be exploited in the development of, for example,
tunable transducers [2,3].

Other effects of these membrane loads, however, are not as widely
appreciated. For instance, such loads can change the damping
observed in various modes of structural vibration [4]. This effect can
be considerable in applications such as pressurized aircraft fuselages
or spinning rotor blades.

A number of researchers report experimental observations of the
effects of membrane loads on structural damping, but without a full
explanation of the mechanics. The main purpose of this paper is to
provide a framework that qualitatively describes these effects and
quantitatively captures the details.

Smith and Wereley [5] measured the frequency and damping of
the fundamental transverse vibration mode of a spinning rotor blade
(beam) in vacuum. Over an angular speed range from O to 900 rpm,
the resonance frequency increased by 25%, whereas, as shown in
Fig. 1, the damping due to a constrained-layer damping treatment
decreased by 35%. Smith and Wereley attribute the damping results
qualitatively to centrifugal stiffening.

Lesieutre et al. [6] considered the frequency and damping of the
vibration modes of a pressurized fuselage sandwich shell. They
modified the approach of Baker and Herrmann [7] for the vibration
analysis of orthotropic cylindrical sandwich shells to include a
complex modulus for the transverse shear stiffness. They found that,
for shell properties representative of a contemplated Boeing High
Speed Civil Transport (HSCT) aircraft, the damping of some modes
of vibration was decreased by as much as 80% by pressurization.
Figure 2 shows the modal loss factors as a function of circumferential
m and longitudinal » mode numbers. The region of the fuselage most
susceptible to this decrease in damping was in the crown above the
wings, in which location a thin sandwich panel was designed to carry
the predominantly tensile loads associated with pressurization and
fuselage bending.

Kosmatka and Mehmed [8] measured the frequency and damping
of the fundamental transverse vibration mode of a spinning integrally
damped rotor blade (twisted plate) in vacuum. As shown in Fig. 3,
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Fig. 1 Damping of the fundamental transverse bending vibration mode

of a spinning blade as a function of spin rate [S].
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over an angular speed range from O to 4000 rpm, the resonance
frequency of the first bending mode increased by 300%, whereas the
damping decreased by 95%, becoming almost negligible. The
resonance frequency of the second bending mode increased by
140%, whereas the damping decreased by 85%. The resonance
frequency of the first torsion mode decreased by 15%, whereas the
(low) damping was difficult to measure, but perhaps increased
modestly. Kosmatka and Mehmed explained the damping results
qualitatively in terms of modal strain energy concepts [9], which is
consistent with the model proposed herein.

Leland and Wright [10] measured the change in natural frequency
and damping of the fundamental transverse vibration mode of a
fixed—fixed piezoelectric beam under compressive axial preload.
Their interest had to do with vibration-energy-harvesting devices. As
shown in Fig. 4, over arange of preloads that decreased the resonance
frequency by 25%, the modal damping increased by 80%.

An additional, but related, effect is specialized to piezoelectric
structures, in which electrical and mechanical behavior are inti-
mately coupled. In this case, membrane loads are also found to
influence the apparent strength of the electromechanical coupling
coefficients associated with flexural motion [10,11].

Verbridge et al. [12] reported resonance quality factors Q higher
than 200,000 for radio-frequency silicon nitride resonators under
tensile stress. Doubly clamped beams made from high-tensile-stress
silicon nitride have quality factors higher than those of cantilevered
beams and those made from a low-stress material. High-quality
factors were thus attributed to high tensile stress. Further research
developed a method of controlling the tension in doubly clamped
nanomechanical beam resonators. As shown in Fig. 5, they then
demonstrated impressive tunability of both frequency and quality
factor: as much as several hundred percent for each [3]. Quality
factors approaching 400,000 were demonstrated, showing that
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Fig. 2 Total loss factors of a thin sandwich shell, pressurized and
nonpressurized, as a function of longitudinal and circumferential mode
indices [6]. Loss factor of face sheets 5, = 1; loss factor of core 7, = 0.
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Fig. 3 Variation of the loss factor of the first bending mode with rotor

speed for twisted plates [8].
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tension can be used as a general material-independent route to
increased quality factor. More recent research explored length
effects, demonstrating high-aspect-ratio nanoresonators with quality
factors exceeding 1,000,000, a value more characteristic of
macroscopic oscillators [13]. Material-dependent internal sources of
damping are said to provide an upper limit on the frequency-quality
factor product fQ. Nevertheless, the precise mechanism by which
tension increases the quality factor even in the presence of increased
material damping and boundary losses remains unexplained.

II. Model Development

Consider the lateral motion of a beam with internal tension T'(x),
as shown in Fig. 6. The linear governing equation of motion,
neglecting damping, is

9? 9? 9? 0 0
o i+ s (B0 5 %) = - (10 3) = peten )

For convenience, and without loss of generality regarding the
effects of tension on damping, specialize to the case of a simply
supported uniform beam subjected to a uniform tension load:
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Fig. 4 Natural frequency and damping of the fundamental transverse
vibration mode of a fixed-fixed piezoelectric beam subject to
compressive axial preload [10].
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Fig. 5 Modal frequencies and damping for silicon nitridle MEMS
devices of several lengths, showing the effects of increasing stress [3].

The boundary-value eigenvalue problems involve mode shapes with
integer numbers of half-sine waves:

w,(x) = a,, sin(ﬂ) m=1,2,... 4)

The solution of the boundary-value eigenvalue problem for static
stability yields an expression for the critical buckling load, shown in
Eq. (5). This provides a natural way to nondimensionalize the
tension. As will be seen, the fundamental resonance frequency also
becomes zero as the compressive load approaches the critical buck-
ling load:

72El
= Ta=T

The solution of the boundary-value eigenvalue problem for
vibration yields an expression for the natural frequencies that shows
how they are affected by the tension:

_EICH*+ TS (mm\*(EI T
S (T) (p_A)(l +El(%z) )

5 ) EI ) T 1/2 1 T 1/2
on = (” pAL‘*)( +EI(%)Z) ‘“’""’( +mZPa)

(6b)

P (4P compressive) Q)

cr

I

The expression for the natural frequencies [Eq. (6b)] can be
viewed as the product of two terms: one representing the nominal
natural frequency in the absence of tension and the other representing
the effect of tension. As is well known for simply supported beams,
the nominal natural frequencies increase with the square of the mode
number. As indicated in Eq. (6), the natural frequencies increase with
tension, but the effect diminishes with increasing mode number. The
higher the tension, the more stringlike the behavior; the lower the
tension, the more beamlike.

() ()
™

a &

Fig. 6 Simply supported beam with distributed lateral force and tensile
axial load.

Next, several damping models are considered: viscous damping
(strain-based and motion-based) and hysteretic damping (complex
modulus).

None of these models are claimed to accurately capture the physics
involved in damping: the viscous models may be said to provide
energy dissipation with mathematical simplicity, whereas the
complex modulus model does not explicitly exhibit the strong
frequency dependence of the viscous models (albeit it at the cost of
being a frequency-domain model). In all cases, light damping is
assumed, and all vibration modes of interest are underdamped.

The modal damping associated with each of these damping
models is addressed. For each mode, the damping in the presence of
tension is compared with that of the nominal case with no tension.

A. Viscous Damping
1. Strain-Based Viscous Damping

This involves an internal moment that is proportional to the rate of
change of curvature; it could be said to be a dynamic component of
the bending moment. After differentiating twice with respect to x to
yield the effective distributed lateral force, this adds a term to the
equation of motion:

*w d dw P*w _Pw
IOAW—’_CEIEW—'_EIW_TWZPZ(X’I) 7

Assuming unforced motion in mode m, the following modal
equation of motion is obtained:

., cp (mm\*, 1 mm\* m)2
L —|EI[==) +T(== =0 (8
et () wo (2] () Jeemo
By comparing terms with those in the canonical unforced modal
equation of motion,

da m + zgmwm(’im + wfnam =0 (9)

one can develop an expression for the modal damping ratio ¢, in
terms of the beam properties and the tension.

2. Motion-Based Viscous Damping

This involves an external distributed lateral force that is pro-
portional to the transverse velocity. This adds a term to the equation
of motion that is independent of the beam material considered:

?w ow *w 0w
IOAW-" Cva_l +E1W—T¥:pz(x,t)
—_——

motion-based viscous damping

(10)

.. cy . 1 mm\* mm\2
— — | EI| — T\ — =0 11
am+PAam+PA[ (L) * (L)]am (an

Again, one can develop an expression for the modal damping ratio
¢, in terms of the beam properties and the tension by comparison
with the canonical modal equation of motion (9).

B. Hysteretic Damping (Complex Modulus)

Assuming harmonic forcing, the following algebraic equation is
obtained in the frequency domain for the response in mode m:

[_wsz N Ez(%) + T($)2]A:;<w) —F, (12

Without forcing, this equation is only satisfied when w = w,,.
Next, add a complex term to represent damping in the frequency
domain:
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13)

The loss factor in this term is associated with material damping
mechanisms and should be considered to vary with frequency. In the
presence of damping, harmonic forcing is required to maintain a
nonzero (complex) response amplitude. In this case, the equation
cannot be satisfied without a forcing term. Nevertheless, comparing
terms with the frequency-domain version of the forced canonical
modal equation of motion permits one to develop an expression for
the modal damping:

O 4 EI (mn 4+EI mi 4+T mﬂzA*(a)) P
— 1 _ — | — _ — =
nElpA L /OA L pA L m m

(14)

An alternate approach involves the use of the so-called modal
strain energy (MSE) method [9]; however, this yields identical
results when there is a single material modulus.

III. Results

The results for modal damping of a simply supported beam under
tension are presented for each of the damping models considered.

A. Viscous Damping
1. Strain-Based Viscous Damping

If the damping mechanism is assumed to be strain-based and
viscous in nature, the modal damping ratio in the presence of tension
for mode m is found as

e (E)? 1 — Lemo
§E1m—2( AED2 (14 L )2 " (] 4 Payif2 (16)
% m?P ( + m? )
CEIm(i

This can be viewed as the product of two terms: one representing
the nominal modal damping ratio in the absence of tension and the
other representing the effect of tension. In this case, the nominal
modal damping increases with the square of the mode number (that
is, with the nominal natural frequency). The modal damping
decreases with increasing tension (to the one-half power), and the
effect diminishes with increasing mode number. In the limit of high
tension, the damping for a given mode approaches zero.

2. Motion-Based Viscous Damping

If the damping mechanism is assumed to be motion-based and
viscous in nature, the modal damping ratio in the presence of tension
for mode m is found as

;V — Cy 1 — §V1710 (17)
" T 2AED P (1 + I (14 ey
N—— p——
&y mo

Again, this can be viewed as the product of two terms: one
representing the nominal modal damping ratio in the absence of
tension and the other representing the effect of tension. In this case,
the nominal modal damping decreases with the square of the mode
number (that is, with the nominal natural frequency). The modal
damping decreases with increasing tension (to the one-half power)
and approaches zero in the limit of high tension. The effect of tension
on modal damping diminishes with increasing mode number.

B. Hysteretic Damping (Complex Modulus)

If the damping mechanism is assumed to be strain-based and
hysteretic in nature, modeled using a complex modulus, the modal
damping ratio (or modal loss factor) in the presence of tension for
mode m is found as

Ner 1 1
%—7@ or ﬂm—nﬂ@ (18)

Once again, this can be viewed as the product of two terms: one
representing the nominal damping in the absence of tension (in this
case simply the loss factor of the beam) and the other representing the
effect of tension. In this case, the nominal modal loss factor has no
explicit dependence on frequency (although it would in practice).
The damping for a given mode decreases with increasing tension and
approaches zero in the limit of high tension. The effect of tension on
damping is strongest for the lowest mode numbers.

In contrast with the viscous damping cases, however, the loss
factor decreases with the first power of tension, not the one-half
power. As complex-modulus-based damping models have had more
success in practice than viscous damping models, Eq. (18) provides
the basis for additional discussion.

C. Discussion

For all the damping models considered, increasing tension reduces
modal damping relative to its zero-tension value. The effect is
strongest for the lowest modes of vibration and increases with
increasing tension.

Defining the nondimensional tension as 7'/ P, and using Eq. (6),
define the modal tension stiffness factor as

2 T/P
o, = a)zm = (1 + /2“) (193)
m

Then the normalized modal frequency and the relative modal loss
factor are defined as

a)m
— = Ja,m? (19b)
@

Nim 1

e, 20)

Figure 7 shows the relative modal loss factors and normalized
modal frequencies as functions of mode number and nondimensional
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Fig. 7 Relative modal loss factors and normalized modal frequencies of
the transverse vibration modes of a beam, as functions of mode number
m and nondimensional tension 7'/P_, for a complex modulus model.
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tension. The solid lines, one for each mode, show how modal
damping and frequency change with tension; discrete values of
tension are indicated by the numbers next to markers on the curve for
m = 1. By visually connecting the markers corresponding to the
same value of tension on adjacent curves, one can observe how
modal damping and frequency change with mode number. Note that
the first point on each curve represents a compressive load; relative to
the no-load baseline, modal frequencies decrease, and modal
damping increases with compression. Increasing tension clearly
reduces modal damping, with the strongest effect on the lowest
modes of vibration.

This behavior can be explained physically by considering the
membrane load as an effective change in the lateral stiffness of the
structure: tensile loads increase it, whereas compressive loads
decrease it.

The modal loss factor can be regarded as a weighted sum of the
loss factors of the contributors to the potential energy of the system;
the weighting factors are the fractions of the potential energy stored
in each contributor when the system is in a configuration corres-
ponding to the mode shape of interest:

Vi .
M = Z( = n) lean Wlth (Vt()tal)m = Z(Vpan)m (21)

parts Vtolal parts

The two contributors to the potential energy of the simply
supported beam under consideration are the flexural stiffness of the
beam and the tension. Realizing that the loss factor associated with
the tension is zero, the modal loss factor may be estimated as

VEI VT ) ( VEI )
m = Tl — =\v_ v 22
L (Vlotal) m el (Vtolal m nT VEI + VT m et ( )

This is essentially the same result as that obtained in Eq. (18).
Compressive loads, by decreasing the effective lateral stiffness,
increase the modal damping. If the tension increases, the loss factor
decreases, tending to zero in the limit of high tension.

IV. Conclusions

Tensile membrane loads decrease the modal damping of flexural
structures, whereas compressive loads increase it; the effect is
strongest on the lowest vibration modes. For a complex modulus
model, modal damping decreases in direct proportion to the increase
in tension, whereas modal frequencies increase in proportion to the
square root of the increase in tension. Viscous damping models yield
slightly different, but similar, results. This model is qualitatively
consistent with a variety of available experimental data.
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